
International Journal of Scientific & Engineering Research Volume 8, Issue 5, May-2017 86
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

Evaluation of Sorting Algorithms,
Mathematical and Empirical Analysis of

sorting Algorithms

Sapram Choudaiah P Chandu Chowdary M Kavitha

ABSTRACT:Sorting is an important data structure in many real life applications. A number of sorting algorithms are in existence till
date. This paper continues the earlier thought of evolutionary study of sorting problem and sorting algorithms concluded with the
chronological list of early pioneers of sorting problem or algorithms. Latter in the study graphical method has been used to present
an evolution of sorting problem and sorting algorithm on the time line.

 An extensive analysis has been done compared with the traditional mathematical methods of ―Bubble Sort, Selection
Sort, Insertion Sort, Merge Sort, Quick Sort. Observations have been obtained on comparing with the existing approaches of All
Sorts.

An “Empirical Analysis” consists of rigorous complexity analysis by various sorting algorithms, in which comparison and real
swapping of all the variables are calculatedAll algorithms were tested on random data of various ranges from small to large. It is an
attempt to compare the performance of various sorting algorithm, with the aim of comparing their speed when sorting an integer
inputs.The empirical data obtained by using the program reveals that Quick sort algorithm is fastest and Bubble sort is slowest.

Keywords: Bubble Sort, Insertion sort, Quick Sort, Merge Sort, Selection Sort, Heap Sort,CPU Time.

Introduction

In spite of plentiful literature and research in
sorting algorithmic domain there is mess found in
documentation as far as credential concern2.
Perhaps this problem found due to lack of
coordination and unavailability of common
platform or knowledge base in the same domain.
Evolutionary study of sorting algorithm or sorting
problem is foundation of futuristic knowledge base
for sorting problem domain1. Since sorting activity
is known as pre-requisition or supportive activity
(searching, Matching etc.) for the various other
computer related activities3. This activity (sorting)
has a distinct place in the computing and
programming domain. It could possible and quit
obvious that some of the important contributors or
pioneers name and their contribution may skipped
from the study. Therefore readers have all the
rights to extent this study with the valid proofs.
Ultimately our objective behind this research is
very much clear, that to provide strength to the
evolutionary study of sorting algorithms and shift
towards a good knowledge base to preserve work
of our forebear for upcoming generation.
Otherwise coming generation could receive hardly
information about sorting problems and syllabi
may restrict with some major/fundamental
algorithms only. Evolutionary approach of sorting
can make learning process alive and gives one

more dimension to student for thinking4. Whereas,
this thinking become a mark of respect to all our
ancestors.

This paper investigates the characteristic of the
sorting algorithms with reference to number of
comparisons made and number of swaps made for
the specific number of elements. Sorting
algorithms are used by many applications to
arrange the elements in increasing/decreasing
order or any other permutation. Sorting
algorithms, like Quick Sort, Shell Sort, Heap Sort,
Insertion Sort, Bubble Sort etc. have different
complexities depending on the number of elements
to sort. The purpose of this investigation is to
determine the number of comparisons, number of
swap operations and after that plotting line graph
for the same to extract values for polynomial
equation. The values a, b and c got is then used for
drawing parabola graph. Through this paper, a
conclusion can be brought on what algorithm to
use for a large number of elements. For larger
arrays, the best choice is Quicksort, which uses
recursion method to sort the elements, which leads
to faster results. Program for each sorting
algorithm in which a counter is used to get the
number of comparisons, number of
swap/assignment operations is used. The data is

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 5, May-2017 87
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

stored in a file, from where it is used for
calculation purpose in an excel file. Least square
method and Matrix inversion method is used to
get the value of constants a, b and c for each
polynomial equation of sorting algorithms.
After calculatingthe values, Graph is drawn for
each sorting algorithmfor the polynomial equation
i.e. Y=AX^2+BX+C or Y=AX.logX+BX+C.

Below is the list of inventors of sorting and
theirsorting invention along with invention year
Sr. No. Sorting Algorithm Inventors Name Invention

Year

1 Radix Sort Herman Hollerith 1880
2 Hellerith's Sorting Machine Herman Hellerith 1901
3 Merge Sort John Van Neumann 1945
4 Insertion Sort(Binary Insertion) john Mauchly 1946
5 Counting Sort] Harold H. Seward 1954
6 Digital Sorting 1954
7 Key Sort 1954
8 Distribution sort H.Seward 1954
9 Bubble Sort(Exchange sort) Inverson 1956

10 Address calculation sorting Issac and singleton 1956
11 Comparison Sort E.H.Friend 1956
12 Radix list sort E.H.Friend 1956
13 Two way insertion sort D.J.Wheeler 1957
14 Radix Sort(Modifed) P.Hildebrandt,H.Rising,JScwartz 1959
15 New Merge Sort B.K. Betz & W.C. Carter 1959
16 Shell Sort Donald L Shell 1959
17 Cascade Merge Sort R.L.GiIstad 1960
18 PolyPhase Merge/Fobinocii Sort R.L.GiIstad 1960
19 Mathsort W.Feurzeig 1960
20 Quick Sort (Partition Exchange sort) CAR Hoare 1961
21 Oscillating Merge Sort Sheldon Sobel 1962
22 Patience Sort C. L. Mallow 1962
23 Selection Sort NA 1962
24 Topological Sort Kahn 1962
25 Tournament Sort(tree sort) K.E..Iversion 1962
26 Tree Sort(Modified) K.E..Iversion 1962
27 Shuttle Sort 1963
28 Biotonic Merge sort US atent3228946(1969)K.E.Batcher 1964
29 Heap Sort J.W.J Willams 1964
30 Theorm H Douglas H.Hunt 1967
31 Batcher Odd-Even Merge Sort Ken Batcher 1968
32 List sort/List merge sort L.J.Woodrum&A.D.Woodall 1969
33 Improved Quick sort Singleton 1969
34 Find:The Program CAR Hoare 1971
35 Odd Even /Brickt sort Habermann 1972
36 Brick sort Habermann 1972
37 Binary Merge sort F.K.Hawang&S.Lin 1972
38 gyrating sort R.M.Karp 1972
39 Binary Merge sort F.K.Hawang& D.N. Deutsh 1973
40 Binary Merge sort C.Christen 1978
41 Binary Merge sort G.K.Manacher 1979
42 Comb Sort Wdzimierz 1980
43 Proxmap Sort Thomas A. Standish 1980
44 Smooth Sort EdsgerDijkstra 1981
44

B Sort
Wainright 1985

45 Unshuffle Sort Art S. Kagel 1985
46 Qsorte Wainright 1987
47 American Flag Sort 1993
48 New Efficient Radix Sort Arne Anderson & Stefan Nilson 1994
49

Self-Indexed sort(SIS)
Yingxu Wang 1996

50 Splay sort Moggat, Eddy &Petersson 1996
51 Flash Sort Karl-Dietrich Neubert 1997
52 Introsort David Musser 1997
53 Gnome Sort Dr. Hamid Sarbazi-Azad 2000
54

Tim sort
Tim Peters 2002

55
Spread sort

Steven J. Ross 2002

56
Tim sort

Tim Peters 2002

57
Bead Sort

Joshua J. Arulanandham, Cristian S 2002

58
Burst Sort

Ranjansinha 2004

59
Libarary Sort/Gapped Insertion sort

Michael A. Bender, Martín 2004

60
Cycle Sort

B.K.Haddon 2005

61
Quicker sort

R.S. Scowen 2005

62
Pancake sorting

Professor Hal Sudborough 2008

63
U Sort

Upendra singh aswal 2011

64
Counting Position Sort

NitinArora 2012

65
Novel Sorting Algorithm

R.Shriniwas&A.RagaDeepthi 2013

66
Bogo Sort(Monkey sort)

NA NA

67
Bucket Sort

NA NA

68
SS06 Sort

K.K.Sudharajan&S.Chakraborty NA

69
Stooge Sort

Prof.Howard Fine and Howard NA

70
J Sort

Jason Morrison NA

71
Strand Sort

NA NA

72
Trim Sort

NA NA

73 Punch Card Sorter A. S. C. Ross NA

Table 1: Inventors of sorting and their sorting
invention along with invention year

The graphical representation of evaluation of
sorting algorithms:

Graph 1:Sorting Algorithms (1880-1962)

Graph2:Sorting Algorithms (1962-1994)

Graph 3:Sorting Algorithms (1996-2013)

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 5, May-2017 88
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

Complexity of Algorithm

 There are two aspects of algorithmic performance:
• Time

• Instructions take time.
• How fast does the algorithm perform?
• What affects its runtime?

• Space
• Data structures take space
• kind of data structures can be used?
• How does choice of data structure

affect the runtime?

Here we will focus on time: How to estimate the
time required for an algorithm

T(n) Name Problems
O(1)
O(log n)
O(n)
O(n log)
O(n2)
O(n3)

Constant
Logarithmic
Linear
Linear-log.
Quadratic
Cubic

Easy-solved

O(2n)
O(n!)

Exponential
Factorial

Hard-solved

Mathematical vs. Empirical Analysis

Mathematical Analysis Empirical Analysis
The algorithm is
analyzed with the help
of mathematical
deviations and there is
no need of specific
input.

The algorithm is
analyzed by taking
some sample of input
and no mathematical
deviation is involved

The principal
weakness of these
types of analysis is its
limited applicability.

The principal strength
of Empirical analysis is
it is applicable to any
algorithm.

The principal strength
of Mathematical
analysis is it is
independent of any
input or the computer
on which algorithmis
running.

The principal weakness
of Empirical analysis is
that it depends upon
the sample input taken
and the computer on
which the algorithm is
running’

Mathematical Analysis of Some Sorting
Algorithms
The common sorting algorithms can be divided
into two classes by the complexity of their

algorithms as, (n2), which includes the bubble,
insertion, selection, and shell sorts , and (n log n)
which includes the heap, merge, and quick sorts.

(A) Selection Sort

Selection sort is not difficult to analyze compared
to other sorting algorithms since none of the loops
depend on the data in the array. Selecting the
lowest element requires scanning all n elements
(this takes n − 1 comparisons) and then swapping it
into the first position. Finding the next lowest
element requires scanning the remaining n − 1
elements and so on, for (n − 1) + (n − 2) + ... + 2 + 1 =
n(n − 1) / 2 ∈ Θ(n2) comparisons (see arithmetic
progression). Each of these scans requires one
swap for n − 1 elements (the final element is
already in place). Among simple average-case
Θ(n2) algorithms, selection sort almost always
outperforms bubble sort and gnome sort, but is
generally outperformed by insertion sort. Insertion
sort is very similar in that after the kth iteration, the
first k elements in the array are in sorted order.
Insertion sort's advantage is that it only scans as
many elements as it needs in order to place the k +
1st element, while selection sort must scan all
remaining elements to find the k + 1st element.
Simple calculation shows that insertion sort will
therefore usually perform about half as many
comparisons as selection sort, although it can
perform just as many or far fewer depending on
the order the array was in prior to sorting. It can be
seen as an advantage for some real-time
applications that selection sort will perform
identically regardless of the order of the array,
while insertion sort's running time can vary
considerably. However, this is more often an
advantage for insertion sort in that it runs much
more efficiently if the array is already sorted or
"close to sorted." While selection sort is preferable
to insertion sort in terms of number of writes (Θ(n)
swaps versus Ο(n2) swaps), it almost always far
exceeds (and never beats) the number of writes
that cycle sort makes, as cycle sort is theoretically
optimal in the number of writes. This can be
important if writes are significantly more
expensive than reads, such as with EEPROM or
Flash memory, where every write lessens the
lifespan of the memory.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 5, May-2017 89
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

(B) Bubble Sort

The bubble sort is the oldest and simplest sort in
use. Unfortunately, it’s the slowest one. The bubble
sort works by comparing each item in the list with
the item next to it, and swapping them if required.
The algorithm repeats this process until it makes a
pass all the way through the list without swapping
any items (in other words, all items are in the
correct order This causes larger values to "bubble"
to the end of the list while smaller values "sink"
towards the beginning of the list. The bubble sort is
generally considered to be the most inefficient
sorting algorithm in common usage. While the
insertion, selection and shell sorts also have O (n2)
complexities, they are significantly more efficient
than the bubble sort. A fair number of algorithm
purists (which means they've probably never
written software for a living) claim that the bubble
sort should never be used for any reason.
Realistically, there isn't a noticeable performance
difference between the various sorts for 100 items
or less, and the simplicity of the bubble sort makes
it attractive. The bubble sort shouldn't be used for
repetitive sorts or sorts of more than a couple
hundred items. Clearly, bubble sort does not
require extra memory.

(C) Insertion Sort

The insertion sort works just like its name suggests
- it inserts each item into its proper place in the
final list. The simplest implementation of this
requires two list structures - the source list and the
list into which sorted items are inserted. To save
memory, most implementations use an in-place
sort that works by moving the current item past
the already sorted items and repeatedly swapping
it with the preceding item until it is in place. Like
the bubble sort, the insertion sort has a complexity
of O (n2). Although it has the same complexity, the
insertion sort is a little over twice as efficient as the
bubble sort. It is relatively simple and easy to
implement and inefficient for large lists. Best case
is seen if array is already sorted. It is a linear
function of n. The worst-case occurs; when array
starts out in reverse order .It is a quadratic function
of n. The insertion sort is a good middle-of-the-
road choice for sorting lists of a few thousand
items or less. The algorithm is significantly simpler
than the shell sort, with only a small trade-off in
efficiency. At the same time, the insertion sort is

over twice as fast as the bubble sort and almost
40% faster than the selection sort. The insertion
sort shouldn't be used for sorting lists larger than a
couple thousand items or repetitive sorting of lists
larger than a couple
hundred items. Since multiple keys with the same
value are placed in the sorted array in the same
order that they appear in the input array, Insertion
sort is stable. This algorithm does not require extra
memory.

(D) Quick Sort

From the initial description it's not obvious that
quick sort takes O(n log n) time on average. It's not
hard to see that the partition operation, which
simply loops over the elements of the array once,
uses O (n) time. In versions that perform
concatenation, this operation is also O (n).
In the best case, each time we perform a partition
we divide the list into two nearly equal pieces. This
means each recursive call processes a list of half
the size. Consequently, we can make only nested
calls before we reach a list of size 1. This means
that the depth of the call tree is . But no two calls at
the same level of the call tree process the same part
of the original list; thus, each level of calls needs
only O(n) time all together (each call has some
constant overhead, but since there are only O(n)
calls at each level, this is subsumed in the O(n)
factor). The result is that the algorithm uses only O
(n log n) time.
Analytical Comparison A limitation of the
empirical comparison is that it is system-
dependent. A more effective way of comparing
algorithms is through their time complexity upper
bound to guarantee that an algorithm will run at
most a certain time with order of magnitude O (f
(n)) where is the number of items in the list to be
sorted. This type of comparison is called
asymptotic analysis. The time complexities of the
algorithms studied are shown in below table.

Algorithm
Time Complexity

Best Case Average
Case

Worst
Case

Bubble Sort O(n) O(n^2)

O(n^2)
Insertion Sort O(n)

O(n^2) O(n^2)

Selection Sort O(n.lg(n))

O(n^2) O(n^2)
Quick Sort O(n.lg(n))

O(n.lg(n)) O(n^2)

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 5, May-2017 90
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

Shell Sort O(n.lg(n))

O(n.lg(n)) O(n^2)
Heap Sort O(n.lg(n))

O(n.lg(n)) O(n.lg(n))

Table2: The time complexities of the algorithms

Although all algorithms have a worst-case runtime
of O(n^2) , only Quicksort & Shell Sort has a best
and average runtime of O(n.lg(n))’ This means that
Quicksort & Shell Sort, on average, will always be
faster than Bubble, Insertion and Selection
sort, if the list is sufficiently large’
O (n) factor work plus two recursive calls on lists
of size in the best case, the relation would be.T (n)
=O (n) +T (n/2)

An alternative approach is to set up a recurrence
relation for the T (n) factor, the time needed to sort
a list of size. Because a single quick sort call
involves

The master theorem tells us that T (n) = O (n log n).
In fact, it's not necessary to divide the list this
precisely; even if each pivot splits the elements
with 99% on one side and 1% on the other (or any
other fixed fraction), the call depth is still limited
to, so the total running time is still O(n log n).

Empirical Analysis of Some Sorting Algorithms

General Plan for Empirical Analysis of Algorithms:

1. Understand the purpose of experiment of
given algorithm

2. Decide the efficiency matrix M. Also decide
the measurement. For example operation’s
count vs. time.

3. Decide on characteristic of input.
4. Create a program for implementing the

algorithm. This program is ready experiment.
5. Generate a sample of input.
6. Run the algorithm for some set of input

sample. Record the result obtained.
7. Analyze the resultant data

Empirical comparison

a. Tests made

The tests were made using the C. Each algorithm
was run on the lists of length of 1, 3, 5, 7, 10, and 15
lakhs. The number of comparisons and number of
Assignment/Swap operations was recorded by
using a counter for number of comparisons and
number of Assignment/Swap operations. The code

was run on Windows 7, with an Intel Core i5
processor and 3GB of RAM. The raw results were
recorded by the reading and writing in the file.
These raw results were tabulated, Calculated, and
graphed using C and MS-Excel.

b. Results

Total Results The total results for all runs for each
algorithm and each list length are shown on Table
and Graph: Table for number of comparisons of
sorting algorithm on given number of elements

Algo.

Number of elements

1 lacs 3 lacs 5 lacs 7 lacs 10 lacs 15 lacs

Bubb
le

Sort

49995
0001

44999850
001

1249997
50001

24499965
0001

4999995
00001

1124999
250001

Insert
ion
Sort

25039
21057

22500033
726

6248912
4089

12246437
7656

2499314
02775

5622460
99741

Selec
tion
Sort

71712
1978

20401241
10

8248512
308

21247437
765

3598314
0378

7631450
9973

Quic
k

Sort

20830
13 7154514 1243984

7 18266103 2588188
3

4147860
3

Shell
Sort

18689
28 6075712 1047571

2 15052412 2195142
4

3390284
8

Heap
Sort

51739
30 16938139 2932148

2 42113995 6164597
8

9520943
5

Table 3: Number of comparisons for sorting algorithms

Graph drawn from values obtained from Table 3

Graph 4: Graph for Comparison of Sorting
Algorithm 2 ^N

0
2E+11
4E+11
6E+11
8E+11
1E+12

1.2E+12

1
La

cs
3

La
cs

5
La

cs
7

La
cs

10
 L

ac
s

15
 L

ac
s

C
o
m
p
a
r
i
s
i
o
n

No of elelements

Graph for Comparision of N^2 Sorting
Algorithm

Bubble sort

selection

insertion

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 5, May-2017 91
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

Graph 5: Graph for Comparison of N.log (N)
Sorting Algorithm

Table for number of Swap/Assignment of sorting
algorithm on given number of elements:

Algo.
Number of elements

1 lacs 3 lacs 5 lacs 7 lacs 10 lacs 15 lacs

Bubble
Sort

4999950
001

449998500
01

1249997
50001

244999650
001

49999
95000

01
1124999250001

Insertio
n Sort

2503921
057

225000337
26

6248912
4089

122464377
656

24993
14027

75
562246099741

Selectio
n Sort

7403931
04 750103362 8258923

407
232464357

65

44693
14127

1
67224709954

Quick
Sort 1026729 3609352 6335691 8665471 12252

113 22301526

Shell
Sort 1668928 5475712 9475712 13651424 19951

424 30902848

Heap
Sort 1674642 5496045 9523826 13687997 20048

658 30986477

Table 4: Number of Swap/Assignment operations for
sorting algorithms

Graph from tabular data is:

Graph6: Graph for number of Swap of Sorting
Algorithm 2 ^N

Graph 7: Total number of Swap/Assignment for
sorting algorithms

Table for time taken (in mili Seconds) for sorting
algorithm on given number of elements:

Algo.
Number of elements

1
lacs

3
lacs

5
lacs

7
lacs 10 lacs 15 lacs

Bubble
Sort

303 2414 3619 5534 6899 7462

Insertion
Sort

42 432 689 1172 1363 1689

Selection
Sort

22 583 814 1261 1429 1932

Quick
Sort

9 36 148 203 256 321

Shell
Sort

13 18 22 26 44 55

Heap
Sort

448 3281 5375 6411 7357 8121

Table 5: Total time taken for sorting algorithms

Graph 8: Total time taken for sorting algorithms

0

20000000

40000000

60000000

80000000

10000000

1
Lacs

5
Lacs

10
Lacs

C
o
m
p
a
r
i
s
i
o
n

Number of Comparisions

Graph for Comparision of N.log(N)
Sorting Algorithm

Quick Sort

Shell Sort

Heap Sort

0
2E+11
4E+11
6E+11
8E+11
1E+12

1.2E+12

1
La

cs

5
La

cs

10
 L

ac
s

N
u
m
b
e
r

o
f

S
w
a
p

Number of Elements

Graph for Number of N^2 Sorting
Algorithm

Bubble Sort

Insertion
Sort

Selection
Sort

0
10000000
20000000
30000000
40000000

1
La

cs
5

La
cs

10
 L

ac
s

N
u
m
b
e
r
o
f

S
w
a
p
s

Number of Elements

Graph for Number of Swaps of N.log(N)
Sorting Algorithm

Quick Sort

Shell Sort

Heap Sort

0
2000
4000
6000
8000

10000

1
Lac

5
Lac

10
Lac

T
i
m
e

i
n

m
i
l
i

S
e
c

Number of Elements

Total time taken for sorting algorithms

Bubble Sort

Insertion
Sort

Selection
Sort

Quick Sort

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 5, May-2017 92
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

Calculate Results

The calculated results (least square fitting) for the
above results of Bubble and Quick sorting
algorithm are shown on Table and Graph. Here X
is number of elements and Y is number of
comparisons

1. Bubble Sort

X (No. of
elements)

Y
(No. of

Compariso
n)

X ^2 X ^3 X ^4 Y.X Y.X ^2

100000 4.9999E+9 1.0E+10 1E+15 1E+20 4.99995E
+14

4.99995E+
19

300000 4.4998E+1
0 9E+10 2.7E+16 8.1E+21 1.35E+16 4.04999E+

21

500000 1.25E+11 2.5E+11 1.25E+17 6.25E+22 6.24999E
+16

3.12499E+
22

700000 2.45E+11 4.9E+11 3.43E+17 2.401E+2
3

1.715E+1
7

1.2005E+2
3

1000000 5E+11 1E+12 1E+18 1E+24 5E+17 5E+23

1500000 1.125E+12 2.25E+1
2

3.375E+1
8

5.0625E+
24

1.6875E+
18

2.53125E+
24

ΣX=41000
00

ΣY=2.045
E+12

ΣX2=4.0
9E+12

Σ
X3=4.871

E+18

ΣX4=6.3
73E+24

ΣYX=2.4
355E+18

Σ
YX2=3.186

65E+24

Table 6: Bubble Sort calculation using Least square
fitting method

6a1+4100000a2+4090000000000a3=006 2044997950

004100000 2435497955= 3 000000000a4871000000+
000a2 4090000000+ 4100000a1

24 + 450409E 3.18664756= 24a3 + 6.3733E + 2
000000000a4871000000+ 000a14090000000

Calculating the values of a1, a2, a3 by using Matrix
Inversion Method:

999999 0.49999999= a3 3352761, -0.5000000= a2
250000, 0.98144531= a1

999999x2 0.49999999+ 352761x 0.50000003- 250000
0.98144531= y

Calculated values from the above values are:

X Y
10 45.981444977223899999999999
500 124750.981428546000000
1000 499500.981411775000000
1500 1124250.981395000000000
2000 1999000.981378220000000
Table 7: Calculated Values of X and Y

Graph from above tabular data is:

Graph 9: Bubble Sort Graph for X-Y values.

2. Quick Sort

Number of
Elements

1000
00

3000
00

5000
00

7000
00

1000
000

1500
000

Number of
Comparison

2083
013

7154
514

1243
9847

1826
6103

2588
1883

4147
8603

12439847 =c + 500000b + 00000a 500000log5
12439847 =C + 500000B + 466208A 9465784.28
25881883 = C + 1000000B +693241A 19931568.5
41478603 = C + 1500000B +05068A 30774796.6
Solving the above equations using Matrix
Inversion Method we get the values of A, B and C
as:
A=5.7086227916717434
B=-12.6063574003357
C=235321.896
Y=5.70867916717434X.logX-
92.606357400272373X+4706433.79167138
X Y
10 235385.468770355
500 254609.857557621
1000 279606.441907242
1500 311257.710256986
2000 335308.233398483
Table 8: Quick Sort calculation using simple matrix
inversion method

0
500000

1000000
1500000
2000000
2500000

Y

x

Bubble Sort

Comparisi
on

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 5, May-2017 93
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

Graph 10: Quick Sort Graph for X-Y values

Summary

Based on the above calculations the values
calculated can be tabulated as follows:

Sorting
Algorit

hm
A B C

Shell
Sort 1.2603520355992 -2.909018983 260352.0356
Heap
Sort 3.2825049996173 -3.500006479 279490.9996

Quick
Sort 5.70862279167174 -12.60635740033 235321.896

Insertio
n Sort -9.2744141 95.404689602554 0.24983064989564
Bubble

Sort 0.98144531250000 -0.50000003352761 0.49999999999999

Table9: Summary of calculations of Sorting
Algorithms.

Graph showing Polynomial Equations Comparison
for algorithms N.log (N). Algorithms:

Graph 11: Polynomial Equation Comparison for
algorithm N.log (N)

Graph showing Polynomial Equations Comparison
for algorithms: N2

Graph 12: Polynomial Equation Comparison for N2
algorithm.

Based on the calculated value of A, B and C the
values of X and Y can be tabulated as follows:

Table for calculated no. of Comparisons for sorting
algorithm on given number of elements:
Alg
o.

Number
of
element
s

 10 500 1000 1500 2000
Bub
ble
Sort

45.9814
4497722

124750.
9814285

499500.
9814118

1124250
.981395

1999000
.981378

Inse
rtion
Sort

969.755
5469151

110150.
7328611

345226.
0650841

705216.
7222549

1190122
.704374

Qui
ck
Sort

235385.
4687704

254609.
8575576

279606.
4419072

311257.
7102570

335308.
2333985

Shel
l
Sort

260364.
81340

264547.
54835

270003.
41313

275934.
98991

282175.
49473

Hea
p
Sort

279565.
04199

292456.
11223

308703.
72986

326190.
30849

474409.
0364815

Table10: No. of Calculated Comparisons using
simple matrix inversion method

Further Study

This study was carried out with a single
computing device. In the future, researchers could
use differentcomputing resources with varying
computing speed to compare the effect of
processor speed on these datasamples. Also, only
integers were used as data sample; it is the interest
of the researchers to know what willhappen to
character arrays in respect to internal sorting in the
future

0

100000

200000

300000

400000

10 50
0

10
00

15
00

20
00

Quick Sort Graph

Comparisio
n

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 5, May-2017 94
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

Conclusion

The empirical data obtained by using the program
reveals the speed of each algorithm, from fastest to
slowest for very large list and ranks as follows:
 1. Quicksort
 2. Shell Sort
3. Heap sort
 4. Insertion sort
 5. Selection sort
 6. Bubble sort
There is a large difference in the time taken to sort
very large lists between the fastest three and the
slowest three. This is due to the efficiency of Quick
Sort, Shell Sort and Heap sort have over the others
when the list to sort is sufficiently large.

References

1. Donald E. Knuth et al. “The Art of Computer
Programming,” Sorting and Searching Edition
2, Vol.3.

2. Cormen et al. “Introduction to Algorithms,”
Edition 3, 31 Jul, 2009.

3. Ahmed M. Aliyu, Dr. P. B. Zirra, “A
Comparative Analysis of Sorting Algorithms
on Integer and Character Arrays,” The
International Journal Of Engineering And
Science (IJES)., ISSN(e): 2319 – 1813 ISSN(p):
2319 – 1805.

4. John Harkins, Tarek El-Ghazawi, Esam El-
Araby, Miaoqing Huang, “Performance and
Analysis of Sorting Algorithms on the SRC 6
Reconfigurable Computer,” in The George
Washington University, 2 Nov. 2005.

5. Wikipedia,(2007) :Sorting Algorithm,
Retrieved from
http://en.wikipedia.org/wiki/Sorting_algorith
m: 24-05-2013 .

6. Wikipedia,(2007) :Selection Sort, Retrieved
from
http://en.wikipedia.org/wiki/Selection_sort 26-
05-2013.

7. Robert L(2002): Data Structures and
Algorithms, 2nd Ed.24-28.

8. Kadam, P.K.a.S., Root to Fruit (1): An
Evolutionary Study of Sorting Problem.
Oriental Journal Of Computer Science &
Technology, 7(1): p. 111-116 (2014).

9. Astrachan, O., Bubble Sort: An Archaeological
Algorithmic Analysis. 2003.

Author Biography

S.Choudaiah

Professor
Department of MCA
Siddharth Institute of
Engineering
&Technology
Puttur, A.P, India

P.Chandu Chowdary

2nd Year MCA
Siddharth Institute of
Engineering
&technology
Puttur, A.P India

M.Kavitha

2nd Year MCA
Siddharth Institute of
Engineering
&technology
Puttur, A.P, India

 IJSER

http://www.ijser.org/

